|
OpenNMT: Setting Up a Neural Machine Translation System培训 |
|
班级人数--热线:4008699035 手机:15921673576( 微信同号) |
增加互动环节,
保障培训效果,坚持小班授课,每个班级的人数限3到5人,超过限定人数,安排到下一期进行学习。 |
授课地点及时间 |
上课地点:【上海】:同济大学(沪西)/新城金郡商务楼(11号线白银路站) 【深圳分部】:电影大厦(地铁一号线大剧院站)/深圳大学成教院 【北京分部】:北京中山学院/福鑫大楼 【南京分部】:金港大厦(和燕路) 【武汉分部】:佳源大厦(高新二路) 【成都分部】:领馆区1号(中和大道) 【广州分部】:广粮大厦 【西安分部】:协同大厦 【沈阳分部】:沈阳理工大学/六宅臻品 【郑州分部】:郑州大学/锦华大厦 【石家庄分部】:河北科技大学/瑞景大厦
开班时间(连续班/晚班/周末班):2020年3月16日 |
课时 |
◆资深工程师授课
☆注重质量
☆边讲边练
☆若学员成绩达到合格及以上水平,将获得免费推荐工作的机会
★查看实验设备详情,请点击此处★ |
质量以及保障 |
☆
1、如有部分内容理解不透或消化不好,可免费在以后培训班中重听;
☆ 2、在课程结束之后,授课老师会留给学员手机和E-mail,免费提供半年的课程技术支持,以便保证培训后的继续消化;
☆3、合格的学员可享受免费推荐就业机会。
☆4、合格学员免费颁发相关工程师等资格证书,提升您的职业资质。 |
☆课程大纲☆ |
|
- Machine learning
Introduction to Machine Learning
- Applications of machine learning
Supervised Versus Unsupervised Learning
Machine Learning Algorithms
Regression
Classification
Clustering
Recommender System
Anomaly Detection
Reinforcement Learning
Regression
- Simple & Multiple Regression
Least Square Method
Estimating the Coefficients
Assessing the Accuracy of the Coefficient Estimates
Assessing the Accuracy of the Model
Post Estimation Analysis
Other Considerations in the Regression Models
Qualitative Predictors
Extensions of the Linear Models
Potential Problems
Bias-variance trade off [under-fitting/over-fitting] for regression models
Resampling Methods
- Cross-Validation
The Validation Set Approach
Leave-One-Out Cross-Validation
k-Fold Cross-Validation
Bias-Variance Trade-Off for k-Fold
The Bootstrap
Model Selection and Regularization
- Subset Selection [Best Subset Selection, Stepwise Selection, Choosing the Optimal Model]
Shrinkage Methods/ Regularization [Ridge Regression, Lasso & Elastic Net]
Selecting the Tuning Parameter
Dimension Reduction Methods
Principal Components Regression
Partial Least Squares
Classification
- Logistic Regression
- The Logistic Model cost function
- Estimating the Coefficients
- Making Predictions
- Odds Ratio
- Performance Evaluation Matrices
- [Sensitivity/Specificity/PPV/NPV, Precision, ROC curve etc.]
- Multiple Logistic Regression
- Logistic Regression for >2 Response Classes
- Regularized Logistic Regression
- Linear Discriminant Analysis
- Using Bayes’ Theorem for Classification
- Linear Discriminant Analysis for p=1
- Linear Discriminant Analysis for p >1
- Quadratic Discriminant Analysis
- K-Nearest Neighbors
- Classification with Non-linear Decision Boundaries
- Support Vector Machines
- Optimization Objective
- The Maximal Margin Classifier
- Kernels
- One-Versus-One Classification
- One-Versus-All Classification
- Comparison of Classification Methods
- Introduction to Deep Learning
ANN Structure
- Biological neurons and artificial neurons
- Non-linear Hypothesis
- Model Representation
- Examples & Intuitions
- Transfer Function/ Activation Functions
- Typical classes of network architectures
- Feed forward ANN.
- Structures of Multi-layer feed forward networks
- Back propagation algorithm
- Back propagation - training and convergence
- Functional approximation with back propagation
- Practical and design issues of back propagation learning
- Deep Learning
- Artificial Intelligence & Deep Learning
- Softmax Regression
- Self-Taught Learning
- Deep Networks
- Demos and Applications
- Lab:
Getting Started with R
- Introduction to R
- Basic Commands & Libraries
- Data Manipulation
- Importing & Exporting data
- Graphical and Numerical Summaries
- Writing functions
- Regression
- Simple & Multiple Linear Regression
- Interaction Terms
- Non-linear Transformations
- Dummy variable regression
- Cross-Validation and the Bootstrap
- Subset selection methods
- Penalization [Ridge, Lasso, Elastic Net]
- Classification
- Logistic Regression, LDA, QDA, and KNN,
- Resampling & Regularization
- Support Vector Machine
- Resampling & Regularization
- Note:
- For ML algorithms, case studies will be used to discuss their application, advantages & potential issues.
- Analysis of different data sets will be performed using R
|
|
|
|
|
|